If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+5=11t
We move all terms to the left:
6t^2+5-(11t)=0
a = 6; b = -11; c = +5;
Δ = b2-4ac
Δ = -112-4·6·5
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-1}{2*6}=\frac{10}{12} =5/6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+1}{2*6}=\frac{12}{12} =1 $
| -2(6n+3)=90 | | -5y-5(-6-2y=0 | | 3(2x+4)-5=2(4+3x)-7 | | 5(r+9)+-2(1-r)=1 | | 152=-11x-13 | | 4(3c-1)-3=7c+3 | | 10(x-7)=5x | | 0.50(x+3)=2(x-3) | | 14+3x=9x-5 | | x-2=3(2x-3) | | 30(p^2-1)=11 | | 128=-8(-8-4m) | | S2-14s+48=0 | | 2-(8x-1)=-13-6x | | 6t^2+5=11 | | b/9+50=60 | | -7/3r=-63/16 | | .08x-11=0.3x+41 | | 30(p2-1)=11 | | 6t^+5=11 | | 4(2-x)=2/3(3x-15) | | l=-3=9 | | F(x)=65x+100 | | -3+6x=x+27 | | 3/4(x-4)=2 | | 3z+8-(3+2z)=14 | | 248=7(6x+5)+3 | | 9y+12=3/4(16y-4) | | x+2=2x+10 | | F(x)=65+100 | | 7+y/8=15 | | 5/x-7=10/x |